
A review of network simulation models of hepatitis C virus and 
HIV among people who inject drugs

Meghan Bellerose1, Lin Zhu1, Liesl M. Hagan2, William W. Thompson2, Liisa M. Randall3, 
Yelena Malyuta1, Joshua A. Salomon1,4, Benjamin P. Linas5

1.Prevention Policy Modeling Lab, Department of Global Health and Population, Harvard T. H. 
Chan School of Public Health

2.Division of Viral Hepatitis, U.S. Centers for Disease Control

3.Massachusetts Department of Public Health

4.Center for Health Policy / Center for Primary Care and Outcomes Research, Stanford University

5.Boston Medical Center, Boston University School of Public Health

Abstract

Network modelling is a valuable tool for simulating hepatitis C virus (HCV) and HIV transmission 

among people who inject drugs (PWID) and assessing the potential impact of treatment and 

harm-reduction interventions. In this paper, we review literature on network simulation models, 

highlighting key structural considerations and questions that network models are well suited to 

address. We describe five approaches (Erdös-Rényi, Stochastic Block, Watts-Strogatz, Barabási-

Albert, and Exponential Random Graph Model) used to model partnership formation with 

emphasis on the strengths of each approach in simulating different features of real-world PWID 

networks. We also review two important structural considerations when designing or interpreting 

results from a network simulation study: 1) dynamic vs. static network and 2) injection only vs. 

both injection and sexual networks. Dynamic network simulations allow partnerships to evolve 

and disintegrate over time, capturing corresponding shifts in individual and population-level 

risk behaviour; however, their high level of complexity and reliance on difficult-to-observe data 

has driven others to develop static network models. Incorporating both sexual and injection 

partnerships increases model complexity and data demands, but more accurately represents HIV 

transmission between PWID and their sexual partners who may not also use drugs. Network 

models add the greatest value when used to investigate how leveraging network structure can 

maximize the effectiveness of health interventions and optimize investments. For example, 

network models have shown that features of a given network and epidemic influence whether 

the greatest community benefit would be achieved by allocating hepatitis C or HIV treatment 

randomly, versus to those with the most partners. They have also demonstrated the potential for 

syringe services and “buddy sharing” programs to reduce disease transmission.

Corresponding author: Meghan Bellerose, meghanebellerose@gmail.com, 90 Smith Street, Boston, MA 02120. 

Conflicts of Interest
The authors declare no conflicts of interest.

HHS Public Access
Author manuscript
Int J Drug Policy. Author manuscript; available in PMC 2022 January 05.

Published in final edited form as:
Int J Drug Policy. 2021 February ; 88: 102580. doi:10.1016/j.drugpo.2019.10.006.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

Network modelling; Hepatitis C; HIV; People who inject drugs; Review

Background

Hepatitis C virus (HCV) and human immunodeficiency virus (HIV) pose major public 

health threats, with an estimated 71 million and 37 million prevalent infections worldwide 

in 2015 (WHO, 2017). Within the United States, in 2016, 2.4 million people had hepatitis 

C and 1.1 million were living with HIV, including 300,000 co-infected with hepatitis C 

(CDC, 2016, 2017a; Hofmeister et al., 2019). Hepatitis C is a leading cause of cirrhosis, 

liver cancer, and liver failure; and without substantial changes in current epidemiological 

trends, the annual cost of hepatitis C in the U.S. is expected to reach $9.1 billion by 2024 

(CDC, 2017b; Razavi et al., 2013). The cost of HIV is also predicted to rise, surpassing 

the $25 billion in federal funding allocated to domestic HIV care and prevention in 2019 

(KFF, 2019). As in other high-income settings, people who inject drugs (PWID) are 

disproportionally affected by HCV and HIV in the U.S., accounting for at least 69% of 

new HCV infections and 10% of new HIV diagnoses (CDC, 2016; Yehia et al., 2014).

Mathematical modelling has proven a useful tool to simulate the spread of HCV and HIV 

among PWID, as well as to assess the benefits of treatment as prevention (TasP) and 

harm-reduction strategies, including peer education, medications for opioid use disorder, 

and syringe services programs (Pitcher et al., 2018; Scott et al., 2016). The majority 

of published models of HCV and HIV transmission among PWID are compartmental 

(Johnson & White, 2011; Pitcher et al., 2018). Using sets of differential equations, 

PWID move through compartments that they are assigned to based on their infection 

state and other attributes, such as demographic characteristics and incarceration status. 

The compartments influence how quickly individuals progress through disease states and 

how likely they are to transmit an infection to partners. Simple compartmental models 

assume a homogenous and completely mixed population, meaning that each member has 

contact with every other member (Anderson & May, 1991). Many approaches have been 

devised to capture heterogeneous mixing of PWID in compartmental models, but doing so 

requires multiplication of the number of compartments, adding complexity to the model 

(Pollack, 2001a; Vickerman et al., 2007). Therefore, addressing real-world heterogeneity is a 

challenge when using a compartmental approach.

Over the past decade, attention has shifted toward network simulations to address questions 

regarding disease transmission among PWID. Network simulation models depict individuals 

as a set of vertices of a graph, called “nodes”, with “ties” connecting two nodes. Ties 

represent specific types of partnerships between the nodes, such as needle sharing or sexual 

relationships. The simplest network models are based only on information regarding “mean 

degree,” or the average number of ties connected to a node in the network. More complex 

models reproduce characteristics of real-world networks, such as the tendency for two 

people who share a common relationship with a third person to be connected themselves 

(“transitivity”), the tendency for people who share traits like gender, race, and injection 
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frequency to be connected (“homophily”), and the presence of nodes with an unusually high 

number of partners (“hubs”). See Box 1 for a glossary of common modelling terms.

Generally, network models are well suited to simulate individual-level heterogeneity. This 

makes them particularly apt for the study of PWID networks, where variations in injection 

frequency (Marmor et al., 1987; Mather & Crofts, 1999), duration of injection career 

(Chitwood et al., 1995; Zeldis et al., 1992), and number of needle/syringe sharing partners 

(van Ameijden et al., 1994) have long been linked to differential HIV acquisition risk 

(De et al., 2007), and more recently to differential HCV transmission risk (Wylie et al., 

2006). Researchers have shown that models that allow for greater individual heterogeneity 

are better able to reproduce observed HIV prevalence and incidence trends among PWID 

(Bernard & Brandeau, 2017; Metzig et al., 2017; Monteiro et al., 2016).

Nevertheless, network modelling is associated with a unique set of challenges. It is 

rarely possible to describe an entire social network, due to the difficulty of gathering 

empirical data on each partnership, so assumptions must be made regarding structure 

and behaviour. This is particularly relevant for PWID populations. Due to high rates of 

homelessness and incarceration among their members, PWID networks are often in flux, 

with partnerships forming and dissolving as individuals enter and exit the population. This 

makes it challenging to identify each member. Furthermore, individuals may not remember 

all of their injection equipment sharing and sexual partners or may not want to disclose them 

due to stigmatization (Bell et al., 2000; Brewer et al., 1999).

We performed a comprehensive review of the literature to identify network simulation 

models of HCV and HIV infections among PWID. Hepatitis B virus (HBV), another 

infection transmitted through PWID needle sharing and sex networks, was also included in 

our search, but was not featured in any of the network modelling studies we identified in the 

literature. In this paper, we first characterize model constructions, describing five network 

modelling frameworks. Next, we explore the trade-offs of two important structural choices 

required when developing a network simulation: 1) the decision to build a static model, 

where population and partnerships are held constant over time, or a dynamic model; and 2) 

the decision to incorporate or exclude sexual transmission routes that overlap with injection 

drug use. Finally, we discuss HCV and HIV infection interventions that have been explored 

using network models, including the relative effectiveness of directing treatment and 

harm-reduction efforts, and the impact of syringe services and “buddy sharing” programs. 

Network modelling remains in a nascent stage yet is being used to tackle complex issues 

in PWID populations and beyond. The aim of this review is to summarize the existing 

literature, highlighting the strengths and limitations of current methodology and the potential 

of network models to aid in HIV and HCV program planning.

Methods

In February and March of 2019, we identified eligible studies through PubMed, Academic 

Search Premier, and Web of Science searches. The following search terms were used: [Title/

Abstract] (“HCV” OR “Hepatitis C” OR “HBV” OR “Hepatitis B” OR “HIV” OR “human 

immunodeficiency virus”) AND (“drug use” OR “drug abuse” OR “substance abuse” OR 

Bellerose et al. Page 3

Int J Drug Policy. Author manuscript; available in PMC 2022 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



“substance use” OR “injection” OR “people who inject drugs” OR “person who injects 

drugs” OR “PWID” OR “opioid” OR “IDU” OR “methamphetamine”) AND (“network” 

OR “mathematical model” OR “ERGM” OR “stochastic block model” OR “agent-based 

model”). Additional studies were identified by collaborators engaged in network modelling 

and from the reference lists of eligible studies.

We included studies written in English that described an HCV, HBV, or HIV network model 

focused on PWID in the review. One researcher (MB) screened each study for eligibility, 

first eliminating papers based on a title and abstract review, then performing a full text 

review of those remaining. Each eligible network simulation study was read to develop a 

list of key modelling approaches, interventions examined, and findings. From this list, we 

identified a few major decisions that distinguish models and impact simulation results to 

highlight in the paper. We also selected a set of interventions to discuss that have been 

explored in multiple network models included in the review.

Search Results

Our search yielded 45 relevant network modelling papers (Figure 1). Five were reviews of 

existing modelling literature, 10 modelled HCV alone, 25 modelled HIV alone, and five 

modelled both HCV and HIV. No papers fitting the inclusion criteria modelled hepatitis B. 

The full list of included studies is provided in Table 1.

Types of Network Simulation Models

Typically, it is not feasible to identify and characterize every partnership within a population 

of PWID. The role of simulations is to make inferences regarding network structure based 

on a sample of that network. To do so, researchers employ a variety of network simulation 

techniques, “models,” to approximate sexual and needle/syringe sharing networks. Network 

simulation models typically fall under the umbrella of agent-based models, in which 

individuals are assigned traits and rules governing their behaviours and interactions with 

one another. For example, each individual could be given a unique race, injection frequency, 

duration of drug use, rate of unprotected sex, and disease status, ideally based on observed 

population data. A number of frameworks have been developed to model the formation of 

ties within a network, including Erdös-Réyni random graph model (Erdos & Reyni, 1959), 

stochastic block model (Frank & Harary, 1982; Snijders & Nowicki, 1997), Watts-Strogatz 

small-world model (Watts & Strogatz, 1998), Barabási-Albert preferential attachment model 

(Barabâsi et al., 2002), and exponential random graph model (Frank & Strauss, 1986). We 

describe key features of each and discuss examples of their application to HCV and HIV 

transmission among PWID. A summary of each framework’s approach to tie formation and 

network fitting is provided in Table 2.

Erdös-Réyni Random Graph Model

Random graph models assume that there are a fixed number of nodes in a network 

and randomly assign ties to each node. Therefore, they differ from true networks in 

an important way: in real networks, new nodes tend to form ties with more connected 

nodes in a phenomenon known as “preferential attachment.” In addition, the Erdös-Réyni 
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model is not suited to represent hubs, because in a random population, individuals are 

statistically expected to have a comparable number of contacts. In a large network, the 

Erdös-Réyni model can have long average path lengths, meaning that there are many 

degrees of separation between individuals. For these reasons, the Erdös-Réyni model has 

been criticized for mischaracterizing human social networks (Robins et al., 2001; Watts & 

Strogatz, 1998). Others argue that this approach is a useful starting point for understanding 

hidden populations with unknown social structure. Accordingly, it has been widely used to 

map HIV and HCV transmission among PWID (Cousien et al., 2017; Cousien et al., 2016; 

Crawford et al., 2018; Marshall et al., 2014; Marshall et al., 2012; Young et al., 2013; Zhong 

et al., 2018). In addition, Cousein et al. (2017; 2016) and Marshall et al. (2014) used the 

Erdös-Réyni model to simulate increased testing and reduced loss to follow-up.

Stochastic Block Model (SBM)

The stochastic block model is a type of random graph model that captures the tendency of 

human social networks to be organized into groups or communities. Nodes are partitioned 

into subsets, called blocks, and the probability of a tie existing between two nodes depends 

on the blocks to which the nodes belong. In early SBMs, each node was affiliated with 

a single block, and therefore played a limited, latent role in the network. The framework 

was later extended by Airoldi et al. (2008) to allow for mixed membership, through 

which nodes can assume membership in multiple blocks depending on who they interact 

with. Zelenev et al. (2018) selected a stochastic block model for their study of HCV and 

HIV infection interventions, as it had the best goodness-of-fit to the degree distribution, 

clustering coefficient, and average path length observed in a sample of their Hartford PWID 

network during the calibration process.

Watts-Strogatz Small World Model

Small world models are based on the notion that no matter how large the network, each 

individual is connected to every other individual by only a small number of ties. This 

principle is implemented in small world models through short average path lengths. The 

Watts-Strogatz model extends this framework by incorporating clustering in addition to the 

small-world property of short path lengths. This structure has proven useful for simulating 

HCV transmission among PWID, because clustering allows for the inclusion of hubs, and 

short average path lengths result in disease passing quickly from infected to uninfected 

nodes. A Watts-Strogatz model was developed by Cui et al. (2009) to recreate the interior, 

highly clustered PWID network within a larger social network, (simulated using a random 

graph model) in Yunnan province, China. Zelenev et al. (2018) also built a small world 

model for their above-mentioned study of HCV and HIV, but found that it was less able to 

match network parameters, such as degree distribution, compared to other model types, and 

therefore was not used to simulate interventions.

Barabási-Albert (BA) Preferential Attachment Model

In the Barabási-Albert model, networks are formed based on preferential attachment, such 

that new nodes are more likely to form ties to existing nodes with a high degree. This results 

in the presence of hubs. In addition, BA networks are assumed to be scale-free, meaning that 

their degree distribution follows a power law. The “rich-get-richer” nature of BA models has 
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been criticized by network researchers who argue that forming ties primarily on the basis of 

degree cannot approximate real-world networks where factors such as homophily strongly 

influence partnership formation (Broido & Clauset, 2018). Dombrowski et al. (2013b) found 

that while this criticism held for the sexual network of PWID in Brooklyn, New York, the 

injection network was approximately scale-free due to the presence of a core of highly 

connected drug users. A BA model was also employed by Rutherford et al. (2016) to analyse 

harm-reduction strategies to reduce HIV prevalence among PWID and female sex workers. 

The researchers note that while the BA algorithm did not capture some aspects of the 

network’s topology, it provided a good approximation of the degree distribution.

Exponential Random Graph Model (ERGM)

ERGMs use logistic regression to estimate the probability that a tie exists between any two 

nodes. Using observed data, the ERGM approach first develops a regression equation that 

estimates the probability of a tie existing as a function of various covariates selected by the 

investigators. For example, the probability of a tie existing could be a function of the age, 

sex, and race of the first person in the partnership (the index node), as well as the difference 

in ages between the two partners, the degree of the index partner, and the number of ties in 

the network. After estimating the odds that a tie exists, the model converts those odds into 

a probability used to determine whether to implement the tie in the simulation. By querying 

each potential tie in the network, the ERGM is able to generate simulated networks that 

match target statistics in the observed network.

ERGMs were originally developed to analyse complete network datasets, which are difficult 

to obtain; however, they can be used with incomplete data when simplifying assumptions 

are applied (Handcock & Gile, 2010; Krivitsky & Morris, 2017). ERGMs were used by 

Hellard et al. (2014) and Rolls et al. (2013a) to investigate network-based interventions to 

reduce hepatitis C prevalence, and by Khan et al. (2013) to explore HIV transmission within 

a PWID network in New York during the peak of the epidemic in the 1990’s. This approach 

was selected because it allows for the inclusion of partnership formation patterns, such as 

homophily and transitivity, which have been shown to play an important role in PWID 

networks (Dombrowski et al., 2013b; Fujimoto et al., 2015).

Data Demands and Calibration

Calibrating a network model to ensure that the structure matches the observed network is 

a challenge, as data on a full PWID network are rarely available, and the sample of the 

network used may be biased to favor specific partnerships while leaving out others. In 

addition, the model types described each require different “levels” of statistics describing 

the network structure for calibration. For example, mean degree falls on a nodal level, 

homophily on a dyad level, and transitivity on a network level. Erdös-Réyni and scale-free 

models, such as the BA model, require few parameter inputs, and are often considered 

to be calibrated to the real-world network if they can match the network’s mean degree. 

Meanwhile, ERGM and SBM typically require higher levels of network statistics. When 

data are scarce, it may not be feasible to calibrate an ERGM or SBM model to higher 

levels without relying on broad assumptions regarding network statistics. Another aspect 

of calibration focuses on disease transmission. Data on disease transmission parameters 
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are almost always unavailable from the PWID network being investigated, so network 

models make inferences based on datasets from other geographical locations or drug-using 

populations. This may introduce bias, as disease transmission dynamics vary between 

networks.

The studies included in this review vary widely in their rigor and the extent to which 

they are supported directly by empirical data. While some of the models serve as 

weaker representations of the underlying PWID population structures, others are better-

validated against empirical networks. Zelenev et al. (2018) provides an example of a more 

comprehensive calibration approach. Their calibration procedure involved reconstructing 

non-sampled edges of the network by estimating key network statistics from an observed 

Hartford PWID data set, including degree distribution, assortativity, clustering, and average 

path length, then examining multiple network model types to select the one that best fit 

the empirical data, in particular ensuring that the mean degree fell within 95%CI of the 

observed. They also calibrated the model against four different baseline HCV prevalence 

scenarios that reflected the heterogeneity of HCV among PWID across U.S. cities. Although 

many existing network models calibrate only to egocentric values like mean degree, the field 

is evolving, and modelers are starting to calibrate to other sociometric measures, such as 

average path length, homophily, and transitivity.

To test the robustness of modelling assumptions, studies may also include sensitivity 

analyses. For example, Zelenev et al. (2018) and Cousien et al. (2017) each performed a 

suite of sensitivity analyses to determine how model predictions would change according 

to parameter distributions. In Zelenev et al. (2018), these included fitting the lower and 

upper bound of U.S. HIV prevalence, considering shorter duration of injection and duration 

of injection partnerships, and changing propensity to share equipment. Ultimately, these 

analyses indicated that the findings from the main model were not sensitive to variability 

in parameters or assumptions. Cousien et al. (2017) similarly varied a host of parameters 

including infection rate, time before linkage to care, average duration of injecting career, 

number of injecting partners, and rate of spontaneous recovery. In this case, results 

were sensitive to multiple parameters. For example, prevalence after 10 years was most 

sensitive to treatment initiation rate and mean time to cessation of injection. As modelling 

assumptions can matter for predicting epidemiological outcomes, additional research on 

network modelling methodology is needed to ensure that modelled networks are faithful 

representations of the underlying population dynamics.

Key Structural Decisions for Network Modelling

Static or Dynamic Network

Choosing whether to develop a static or dynamic network model is one of the major 

decisions required at the start of a network simulation effort. Early models of HCV 

infections among PWID assumed static networks in which partnerships were held constant 

over time or analysed at a single moment in time (Cousien et al., 2017; Cousien et al., 2016; 

Hellard et al., 2014; Rolls et al., 2012; Rolls et al., 2013a; Rolls et al., 2013b; Rutherford et 

al., 2016). While these static models continue to serve as the foundation of HCV infection 

modelling, some have argued that dynamic models are critical for investigating long-term 
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infections like HCV, where partner turnover could be high (Hellard et al., 2014; Metzig et 

al., 2017; Rolls et al., 2013a). Due to factors such as homelessness and incarceration, PWID 

networks may be highly fluid, with ties forming and dissolving frequently (Aitken et al., 

2009; Aitken et al., 2004; Costenbader et al., 2006). Dynamic models are able to capture 

this fluidity by allowing for partnership changes and movement into and out of the network. 

As a result, there has been an upsurge in the number of dynamic PWID network models 

published in the last five years (Campbell et al., 2017; Cousien et al., 2018; Dombrowski et 

al., 2013b; Dombrowski et al., 2017; Dombrowski et al., 2013c; Fu et al., 2016; Fu et al., 

2018; Gutfraind et al., 2015; Hutchinson et al., 2006; Khan et al., 2013; Khan et al., 2018; 

Marshall et al., 2014; Marshall et al., 2012; Metzig et al., 2017; Mills et al., 2013; Monteiro 

et al., 2016; Nucit & Randon-Furling, 2017; Zelenev et al., 2018).

A key reason to favour a dynamic approach is that shifts in network composition and 

injection partnerships have been shown to increase the probability of disease transmission 

(Costenbader et al., 2006; Curtis et al., 1995; Hoffmann et al., 1997). For example, in a 

longitudinal study of HIV risk behaviours among PWID, Costenbader et al. (2006) found 

that individuals who reported an entirely new set of drug-using contacts at follow-up 

were three times more likely to be in the increased risk behaviour group. Dombrowski 

et al. (2017) and Khan et al. (2013) underscored the importance of network turnover by 

demonstrating a “firewall effect” to the spread of HIV in Brooklyn in the early 1990’s: 

when partnerships remained stable over time, HIV prevalence rates stabilized at levels well 

below population saturation. First described by Friedman et al. (2000), this effect is possible 

because the viral loads of newly infected individuals spike in the first six weeks of HIV 

infection, then moderate to lower levels. The positioning of long-infected individuals with 

lower viral loads at key breakpoints in the network could slow the spread of disease from 

newly infected nodes with high viral loads to non-infected segments of the network. This 

finding led the authors to hypothesize that programs that force PWID to re-order their 

networks by causing a large inflow or outflow of PWID, such as mass arrests or urban 

renewal projects, lead to increases in HIV incidence. Indeed, Mehta et al. (2017) used 

molecular data from seroconverters in Tijuana, Mexico alongside qualitative and geospatial 

data to show that public policies that dispersed and relocated homeless populations resulted 

in more risk taking behaviour and reduced access to prevention services. In recognition of 

the importance of network changes, Rolls et al. (2012) adjusted their static model to include 

“imported” infections from sources that are not network neighbours. This modification, or 

a dynamic approach that allows susceptible nodes to enter the network, is also needed to 

prevent rapid saturation in situations where incidence of infection is high.

Dynamic models are also valuable for capturing the movement of PWID into and out of 

networks due to incarceration. In 1994, a 12-city study found that over 60% of PWID 

reported a history of incarceration, and today PWID remain vastly overrepresented among 

prison populations (Ball et al., 2017; Dolan et al., 2015). As a consequence, there is a 

high burden of HCV and HIV among prisoners, with an estimated one-quarter of inmates 

(equating to 1.65 million) with a chronic HCV infection (Dolan et al., 2015; Larney et al., 

2013). While none of the network models included in this review explicitly model prison 

populations, the field of HCV and HIV research would benefit from models that capture 

those leaving prisons to return to old networks or form new ones.
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In addition to allowing for changes in partnerships over time, some dynamic models allow 

the parameters governing tie formation and dissolution to vary over time. This is valuable, 

because studies have shown that individual risk behaviours, such as injection and needle 

sharing frequency, shift over the length of an injection career, often following predictable 

patterns that influence disease acquisition. For example, new injection drug users have been 

shown to display higher risk behaviour than long-time injectors, and represent an important 

pool of susceptible individuals (Fennema et al., 1997). Marshall et al. (2014) noted that a 

major limitation of many network models, including their own, is that they do not account 

for changes in individual attributes and risk behaviours over time.

Alongside these benefits, there are a number of drawbacks to using dynamic models. As 

noted by Rolls et al. (2012), dynamic network models are complicated to develop due to 

the subtleties of tie formation and dissolution. In situations where little data exist to inform 

network models, investigators have argued that a static model requires fewer assumptions 

and is, therefore, a better choice (Cousien et al., 2017; Hellard et al., 2014). Moreover, 

for networks with relatively stable injection or sexual partnerships, a static model may 

accurately approximate network dynamics. In a Melbourne PWID network, the median 

length of a partnership was fairly long at three years, so a static model was deemed 

appropriate (Hellard et al., 2014). However, there are large between-study variations in 

partnership duration. For example, a survey of 345 PWID in San Francisco showed a mean 

injection partnership duration of 4.5 months, while in the Hartford network and a network 

of PWID in rural Appalachia, average tie duration was greater than 10 years (Havens et al., 

2013; Morris et al., 2014; Zelenev et al., 2018). Thus, it is useful to consider the stability of 

network ties when selecting a static or dynamic modelling approach.

In addition, when interventions are simulated over a short period of time, network 

fluctuations are less significant and may not need to be incorporated. For example, to 

mitigate the limitations of their static model, Rolls et al. (2012) reported values based 

on one simulated year after the burn-in period. Meanwhile, for their 15 and 40 year-long 

simulations, Dombrowski et al. (2017) and Hutchinson et al. (2006) used dynamic models. 

While shorter time horizons may allow static models to produce more reliable outputs, 

previous modelling studies have indicated that the full impact of combined HCV/HIV 

infection prevention strategies only accrues after 10 to 15 years (Alistar et al., 2011; Alsallaq 

et al., 2013). This trade-off may have influenced Hellard et al. (2014)’s and Cousien et al. 

(2016)’s decisions to simulate interventions over 10 and 40 years, respectively, despite using 

static models. In short, the scarcity of data regarding the long-term behaviour of injection 

drug use networks limits researchers’ abilities to comprehensively evaluate the performance 

of dynamic network models.

Incorporating a Sexual Transmission Network

Another structural decision that has differed across PWID network models is whether 

sexual exposure is included as a transmission pathway. While few hepatitis C cases 

have historically been attributed to sexual transmission (Price et al., 2018), justifying its 

exclusion from many HCV models, sexual contact between PWID and their non-injecting 

sexual partners is an important route of HIV transmission (Blower et al., 1991; Terrault 
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et al., 2013). Indeed, Campbell et al. (2017) determined that sex was the most frequent 

transmission route during the 2016 HIV epidemic among PWID in St. Petersburg, Russia, 

and multiple models have shown that reducing the injection frequency of current PWID 

reduces HIV prevalence among their non-drug-using sexual partners (Mills et al., 2013; 

Rutherford et al., 2016). However, developing a network of both sexual and injection 

relationships adds model complexity and requires detailed partnership data or strong 

assumptions. For these reasons, a number of models exclude sexual partnerships and only 

simulate HIV transmission through injection equipment sharing among PWID (Cousien et 

al., 2017; Cousien et al., 2016; Kretzschmar & Wiessing, 1998; Richardson & Grund, 2012; 

Rolls et al., 2012).

Among the many PWID network models that have considered sexual transmission, a variety 

of approaches have been taken to incorporating sexual network data. Mills et al. (2013) 

opted to build a network including only sexual ties, as well as a separate stochastic, 

compartmental model to capture transmission via needle/syringe sharing, then considered 

the results of both models together. Others have created bi-layer networks to simulate HIV 

transmission via sexual contacts and needle sharing (Fu et al., 2016; Fu et al., 2018; Zhong 

et al., 2018). For example, Zhong et al. (2018) developed a bi-layer network including one 

layer representing unprotected sex relationships between PWID and female sex workers, and 

a second representing needle sharing among PWID, with bridges connecting individuals in 

both layers. Using this framework, they found that individuals who bridge the two networks 

are key contributors to the scale and speed of HIV transmission, and therefore should be the 

target of network-based interventions.

Rather than constructing two overlapping networks to incorporate both transmission routes, 

many models include a single “risk network.” In some risk networks, each tie represents 

a specific partnership category: 1) sex only, 2) injection only, or 3) sex and injection 

(Campbell et al., 2017; Escudero et al., 2017; Escudero et al., 2016; Marshall et al., 2014; 

Marshall et al., 2012; Monteiro et al., 2016), while in others, ties represent a general 

risk relationship, where sex and needle sharing cannot be de-coupled (Fujimoto et al., 

2015; Rutherford et al., 2016; Young et al., 2013). For example, in the Rutherford et al. 

(2016) BA model of PWID and female sex workers in Vancouver, Canada, sexual and 

needle/syringe sharing ties are collapsed into a single tie type, because sexual and injection 

relationships are frequently coincident among the modelled population. Likewise, the Young 

et al. (2013) model does not differentiate between sex and injection ties, but rather assigns 

each individual a risk behaviour value based on the sum of their weighted responses to 

questions regarding frequencies of condom use, needle and cooker sharing, and unprotected 

sex. Network ties were further simplified in Fujimoto et al. (2015), such that each tie 

represented any reported sexual or drug using (rather than solely injection drug using) 

relationship.

Where do Network Models Add the Greatest Value?

In general, network simulation models add the greatest value when used to investigate a 

question about how to leverage the structure of a network to maximize the effectiveness 

of a public health intervention. For example, in 2016, the World Health Organization set 
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the ambitious target of eliminating HCV transmission among PWID by the year 2030, but 

the best strategy, or mix of strategies, to achieve that goal is not certain (WHO, 2017). 

An important question toward this aim is how to focus increased hepatitis C testing and 

treatment among PWID. On one hand, there is intuitive appeal to the idea of randomly 

distributing testing and treatment among PWID, as doing so would not require collecting 

data on partnerships or risk behaviours. On the other hand, such an approach might cure 

many PWID who have few ties to the network, therefore conferring limited prevention 

benefit for other susceptible PWID, while missing high-degree individuals who could 

transmit disease to more partners and re-seed the network with HCV.

Targeting by Degree

Understanding how we can leverage “degree” to improve the effectiveness of elimination 

strategies is a question to which network simulations are well suited. Fu et al. (2016), for 

example, designed a model to determine whether to target a Chicago-based hepatitis C peer 

education program to PWID with the highest degree, and found that targeting in such a 

manner led to a three-fold increase in the number of HCV infections averted over a 10-year 

period compared to allocating the intervention randomly. Zhong et al. (2018) similarly 

observed greater reductions in HIV prevalence when they prevented the highest degree 

nodes in their model from transmitting HIV than when they prevented transmission from 

randomly selected nodes. However, the modellers did not specify a particular intervention 

to curtail transmission and note that the level of network detail required to identify which 

nodes have the highest degrees may be challenging to obtain in real-world settings. In 

the U.S., this information is often routinely collected through public health surveillance 

programs focused on contact tracing and partner notification, but it is difficult to ensure that 

each individual in the network is surveyed.

In contrast, Zelenev et al. (2018) found that randomly allocated hepatitis C treatment 

resulted in greater reductions in prevalence than all strategies where PWID were treated 

based on degree. In addition, in networks with high transitivity, such as the Brooklyn 

PWID network modelled by Dombrowski et al. (2013b), treating only those with the highest 

degrees without treating their partners could result in a high risk of re-infection.

To address re-infection risk, a third strategy for allocating HCV and HIV infection 

prevention efforts has been explored, in which the injection contacts of randomly selected 

PWID are targeted. Injection contacts may be defined strictly as needle/syringe sharing 

partners or more loosely as those who use drugs in the same space at the same time. 

Under the umbrella of targeting contacts, models have also considered which contacts are 

most effective to target. Rolls et al. (2013a) found that treating HCV positive contacts of 

uninfected PWID was the most effective contact targeting strategy. Treating all infected 

primary and secondary contacts was slightly more effective in reducing prevalence than 

treating only primary contacts, as doing so reduces the rate of re-infection; however, in a 

real-world intervention, the small difference in prevalence between these two strategies may 

be outweighed by the additional cost of locating and treating secondary contacts. Among 

models that have simulated all three strategies (i.e. targeting by degree, random targeting, 

and targeting contacts), targeting contacts has held the top or middle ranking in all. Rolls 
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et al. (2013a) and Hellard et al. (2014) found that treating contacts of PWID in Melbourne, 

Australia resulted in the greatest declines in HCV infection incidence compared to random 

allocation and allocation based on node degree, while Zelenev et al. (2018) and Fu et al. 

(2016) observed that the benefit from treating contacts fell between that of the other two 

approaches.

There are a number of factors that may have contributed to these discrepancies in network 

strategy effectiveness, including network characteristics, epidemic duration, and the type 

of intervention being simulated. Rolls et al. (2013a) hypothesized that targeting based on 

degree was likely to be more effective in a network with hubs and a high average number 

of injecting partners. This idea is supported by the finding that targeting peer education to 

PWID hubs was the most effective approach to averting new HCV infections in Chicago 

(Fu et al., 2016). However, when treatment, rather than harm reduction, is simulated, the 

presence of hubs and higher average numbers of injection partners may paradoxically 

allow for high re-infection risk, rendering the strategy ineffective. This result was seen in 

the Zelenev et al. (2018) network where the average number of partners was high (4.2). 

Meanwhile in networks without hubs, where PWID have few partners on average, such 

as the Melbourne network described in Rolls et al. (2013a), treating contacts rather than 

high-degree nodes was the strongest approach.

Epidemic stage may also influence which network-based strategies will produce the 

greatest reductions in incidence. Campo and Khudyakov (2018) compared the efficacy of 

network-based hepatitis C interventions within a PWID population in Indiana during a long-

established epidemic and a hypothetical outbreak situation. They found that in an established 

epidemic, removing high degree nodes led to the largest reductions in incidence, while in 

an outbreak setting, random removal was most effective. This finding is in concert with that 

of other modelling studies focused on outbreak settings (Bartlett et al., 2017; Zelenev et al., 

2018).

One important message that emerges from the network simulation approach is that there 

is likely no single answer to the question of how to allocate an intervention. The optimal 

strategy for focusing effort depends on the characteristics of the network itself, the epidemic, 

and the intervention being considered.

Needle and Syringe Services

Network models have also proven useful for predicting the impact of interventions to 

reduce injection equipment sharing, such as syringe services and “buddy sharing” programs. 

Syringe services, sometimes referred to as needle and syringe exchange programs (NSPs), 

are community-based programs that provide access to sterile injection equipment free of cost 

and facilitate safe disposal of used needles and syringes. Many offer additional prevention 

materials, such as alcohol swabs, sterile water, and condoms, education on safer injection 

practices, testing for HIV and HCV infections, and counselling. Nearly two decades ago, 

Pollack et al. (2001a, 2001b) used a compartmental model to show that NSPs could produce 

minor reductions in HCV transmission. However, the authors note that because their model 

did not account for heterogeneity in number of injection partnerships or injection frequency, 

it may have overestimated the impact of NSPs in their PWID population. NSPs have been 
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simulated using a number of other compartmental models (Corson et al., 2013; Vickerman 

et al., 2007; Vickerman et al., 2012) and network models (Kretzschmar & Wiessing, 1998; 

Marshall et al., 2014; Rutherford et al., 2016).

Among network modelling studies, Kretzschmar and Wiessing (1998) found that reducing 

needle sharing frequency could lower HIV incidence if targeted toward new PWID, who 

had higher baseline needle sharing frequencies and infectivity in the model. In addition, 

Marshall et al. (2014) predicted that increased NSP coverage, resulting in 10% of PWID 

sharing syringes per year (compared to 20% in the status quo scenario), would lead to 

a 34% reduction in HIV incidence by 2040. When applied in the real world, syringe 

services programs can trigger a series of inter-dependent benefits beyond reducing injection 

equipment sharing, such as improving access to substance use disorder treatment, which in 

turn increases the rate at which HIV-positive PWID initiate treatment (Hagan et al., 2000). 

Indeed, when the NSP scenario was combined with increased HIV testing, greater access 

to substance use disorder treatment, and scaled-up TasP, the model showed reductions in 

incidence as high as 62% (Marshall et al., 2014). Likewise, Rutherford et al. (2016) found 

that reducing syringe sharing was likely to have a significant impact on HIV prevalence.

Network models are particularly well suited to explore the impact of “buddy sharing” 

programs, as they depend on information regarding network structure. Through these 

programs, PWID are encouraged by health workers and through promotional materials 
to only share needles and syringes with a single “buddy,” or long-term injection partner. 

To simulate this intervention, network models can incorporate observed data on the 

reciprocity of injection ties (i.e. if both partners reported an injection relationship), duration 

of injection partnerships, and frequency of needle sharing. In their network model of 

PWID in the Netherlands, Kretzschmar and Wiessing (1998) distinguished between stable 

buddy relationships, in which injecting equipment is shared on a regular basis between 

two long-term injecting partners, and incidental sharing with strangers. They found that 

when the fraction of sharing events that occurred with buddies rose above 0.5, HIV 

prevalence declined. Buddy sharing is just one example of the utility of network models 

for understanding interventions targeting specific partnership types or groups of PWID.

What’s Next?

As public health leaders design interventions to tackle HIV and HCV transmission among 

PWID, network modelling may serve as a valuable tool. Using network models, researchers 

can compare which targeting strategies or programs may achieve the greatest reductions in 

disease incidence or prevalence. However, for models to accurately predict the results of an 

intervention, they should be consistent with empirical data from the relevant networks, and 

opportunities or direct empirical validation are presently limited by a lack of network data. 

As the field of network modelling develops, both data availability and calibration approaches 

will likely improve, allowing for more confidence in model outputs. In addition, as network-

based interventions are implemented among real populations of PWID, observed outcomes 

can be compared to initial modelling results to both test the strength of a given model and 

gain a greater insight into the ways in which modelling assumptions can influence simulated 

outcomes.
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Conclusions

Network modelling can be used to address critical knowledge gaps among public health 

decision makers and program planners. When developing a network simulation, it is 

important to recognize that different model frameworks are better suited to capture specific 

sets of network characteristics and have different data demands. However, each model 

within one of the broader model types described has a unique structure that influences its 

ability to fit real world networks and address specific questions. Therefore, in this review, 

we have avoided comparing the strengths and weaknesses of each model type. Rather, 

we outline some of the benefits and trade-offs of adding complexity to models through 

dynamic partnership formation and dissolution, population turnover, and sexual transmission 

routes, and discuss how each may affect the results of simulated interventions. The network 

modelling studies reviewed in this paper demonstrate that PWID network characteristics, 

such as injection partnership stability, degree distribution, and epidemic duration, may have 

a significant impact on the effectiveness of treatment and harm reduction interventions. They 

also highlight the potential of network simulations to serve as powerful guides for local 

governmental agencies’ HIV and HCV infection prevention and control efforts.
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Box 1.

Glossary of common modelling terms

Term* Meaning Synonyms

Network Structure

Network A collection of entities and the set of relationships among 
them.

Graph

Node The entity of interest in a network. In infectious disease 
modelling, a node represents an individual.

Vertex, Actor

Tie A connection between two nodes. In infectious disease 
modelling, ties exist between nodes with a non-zero 
probability of disease transmission. For example, a needle 
sharing or sexual partnership through which HIV or HCV 
transmission could occur.

Edge, Link, 
Connection, 
Line

Hub A node with a large number of ties in comparison to other 
nodes in the network.

Cluster

Bridge A tie that connects two otherwise disconnected components of 
the network.

Degree The number of ties a given node has to other nodes.

Average degree The average number of ties per node.

Degree distribution The set of probabilities P(k) where k=1,2,… that a randomly 
selected node has degree k.

Network density A measure of the proportion of possible ties that are 
actualized among members of a network. Calculated by 
dividing the number of actual ties in the network by the 
number of possible ties. While needle sharing ties could 
hypothetically exist between all nodes in a network of only 
people who inject drugs, the number of possible sexual 
ties is restricted by sex partner preferences (e.g. MSM, 
heterosexual).

Clustering 
coefficient

Measure of the degree to which nodes in the network are 
clustered together. A measure of the density of ties around a 
given node.

Path length The number of ties along the shortest path connecting two 
nodes. In other words, the degrees of separation between two 
individuals.

Distance

Average path 
length

The average distance between all pairs of nodes in a network.

Network diameter The maximum path length between any pair of nodes in the 
network.

Network Features

Heterogeneity
(vs. homogeneity)

Demographic, biological, or behavioural attributes are 
assigned to individuals separately. For example, each 
individual can be given a specific race, rate of unprotected 
sex, and injection frequency, which influence their partnership 
formation and probability of disease transmission. A key 
characteristic of network models is their ability to incorporate 
individual heterogeneity.

Homogeneity
(vs. heterogeneity)

Individuals in each disease state are assumed to have the 
same characteristics. Demographic, biological, or behavioural 
differences are introduced by dividing the population into 
additional sub-compartments, rather than by attributing these 
differences to each individual separately. Each individual in a 
sub-compartment has the same rate and probability of contact 
with other individuals.

Homophily The preference for nodes to form ties with nodes that are 
similar to themselves in some way. In human networks, the 

Assortativity, 
Assortative 
mixing
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Term* Meaning Synonyms

tendency for people who share traits like gender and race to 
be connected.

Transitivity The tendency for two people who share a common 
relationship with a third person to be connected themselves. 
Often described with the saying “a friend of my friend is also 
my friend.”

Clustering

Preferential 
attachment

The tendency of new nodes to form ties with more 
connected nodes. Sometimes referred to as the “rich-get-
richer” hypothesis.

Scale-Free A scale free network has a degree distribution that follows a 
power law. That is, the fraction P(k) of nodes in the network 
with degree k follows the formula: P(k) ~ k−γ where γ is a 
parameter whose value falls in the range 2 < γ < 3. Notable 
characteristics of scale-free networks include the presence of 
hubs and a clustering coefficient that decreases as the average 
node degree increases. The result is that low-degree nodes 
belong to dense network of sub-components and those sub-
components are connected to each other through hubs. For 
example, a social network where individuals are grouped into 
highly connected communities, but have a few acquaintance 
relationships outside of their communities.

Modelling Types

Network model A model type in which the full contact structure of individuals 
over a period of time are represented.

Compartmental 
model

This model type stratifies the population into different 
compartments, such as health states. Compartments are 
assumed to represent homogenous subpopulations where all 
members share the same characteristic, such as age, sex, and 
risk of infection.

Static model
(vs. dynamic 
model)

In a static model, all variables are constant and independent of 
time. In a static network model, population, risk behaviours, 
and partnerships remain fixed over time and in equilibrium.

Dynamic model
(vs. static model)

A dynamic model contains at least one time dependent 
variable. Using a dynamic network model, populations and 
partnerships can be made to shift over time as a result of 
factors such as births, deaths, migration, and changes in 
disease prevalence.

Deterministic 
model
(vs. stochastic 
model)

This model type describes the average behaviour of a system 
without taking into account chance events in single entities 
(e.g. individuals). Therefore, these models are often applied to 
situations with large numbers of individuals where stochastic 
variation becomes less important and heterogeneity can be 
accounted for using subpopulations. The outputs of this model 
type are fully determined by the initial inputs and conditions.

Stochastic model
(vs. deterministic 
model)

A type of model where parameters and variables are described 
by probability distributions and account for random variation 
in risk, transmission, and other factors over time, the result 
being that the same initial conditions can produce different 
outputs with each model run.

Modelling Process

Parameter A quantity used to describe the relationships between 
model variables. For instance, a parameter can describe the 
likelihood of disease transmission between two individuals 
or how long an individual remains in a given disease state. 
Parameters can be selected based on empirical data, model 
calibration, or assumptions.

Calibration 
(“calibrate”)

The process of adjusting model parameters so that outputs 
agree with the data used for model development.

Goodness-of-fit The extent to which observed data match the values predicted 
by the model.
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Term* Meaning Synonyms

Burn-in The practice of discarding some iterations at the beginning 
of a model simulation run, because early samples may not 
accurately represent the desired distribution.

Time horizon The chosen time at which the effects of an intervention will be 
evaluated.

Sensitivity analysis An assessment of the impact that input parameters have on 
model predictions. They are used to determine the robustness 
of the results to changes in initial conditions and the external 
validity of model outcomes outside of the simulation setting.

*
Terms may have alternative definitions. The definitions selected apply to modelling HCV and HIV 

transmission among networks of people who inject drugs.
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Figure 1. 
Flow diagram of studies assessed for review

*Other sources include reference lists of eligible studies and personal databases of 

collaborators involved in network modelling
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Table 1.

Network models identified through literature review

Author Year Disease(s) Setting Model framework Primary focus or interventions 
examined

Campbell et al. 2017 HIV Indiana, USA Original network 
(no tie simulation), 
dynamic

Map transmission pathways during 
2016 HIV outbreak using social and 
genetic distance data

Campo & Khudyakov 2018 HCV/HIV Indiana, USA ABM, dynamic Random or targeted removal of nodes in 
a sustained or new HCV epidemic

Cousien et al. 2017 HCV Montreal, Canada Erdös-Rényi, static Improved treatment, linkage to care

Cousien et al. 2016 HCV 5 cities, France Erdös-Rényi, static Improved treatment, linkage to care

Cousien et al. 2015 HCV (review)

Cousien et al. 2018 HCV Melbourne, Australia ABM, dynamic Cost effectiveness of improved 
treatment, linkage to care, and harm 
reduction

Crawford et al. 2018 HIV St. Petersburg, Russia Erdös-Rényi, static Estimate PWID population size

Cui et al. 2009 HIV Yunnan Province, 
China

ABM, Small world, 
dynamic

Build ABM network

Delva et al. 2016 HIV (review)

Dombrowski et al. 2013a HIV New York City, USA BA, dynamic Compare topology of an injection and 
sexual network

Dombrowski et al. 2017 HIV New York City, USA ERGM, dynamic Explore firewall effect to spread of HIV

Dombrowski et al. 2013b HIV New York City & 
Colorado Springs, 
USA

ERGM, dynamic Determine importance of attribute and 
degree homophily in PWID networks

Escudero et al. 2017 HIV New York City, USA ABM, dynamic Determine proportion of HIV 
transmission attributable to acute HIV 
infection among PWID

Escudero et al. 2016 HIV New York City, USA ABM, dynamic Estimate HIV incidence and number 
of transmission acts at each care 
continuum stage

Friedman et al. 2000 HIV New York City, USA Original network (no 
tie simulation), static

Explore firewall effect to spread of HIV

Fu et al. 2016 HCV/HIV Chicago, Illinois, 
USA

ABM, dynamic Random or targeted peer education

Fu et al. 2018 HIV Chicago, Illinois, 
USA

ABM, dynamic Random or targeted enrollment in PrEP

Fujimoto et al. 2015 HIV Houston, Texas, USA ERGM, dynamic Explore venue based ties and role of 
homophily

Gile & Handcock 2011 HIV Mykolaiv, Ukraine ERGM, static Develop ERGM; estimate of HIV 
prevalence

Gutfraind et al. 2015 HCV Chicago, Illinois, 
USA

ABM, dynamic Map incidence and prevalence trends

Hellard et al. 2015 HCV/HIV (review)

Hellard et al. 2014 HCV/HIV Melbourne, Australia ERGM, static Random or targeted treatment

Khan et al. 2013 HIV New York City, USA ERGM, dynamic Explore firewall effect to spread of HIV

Khan et al. 2018 HCV/HIV New York City, USA ABM, dynamic Increased DAA treatment, improved 
syringe access and MAT

Kretzschmar & 
Wiessing

1998 HIV Rotterdam, 
Netherlands

Random, static Reduce needle sharing in new or long-
term PWID, share with a single “buddy”
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Author Year Disease(s) Setting Model framework Primary focus or interventions 
examined

Marshall et al. 2014 HIV New York City, USA ABM, Erdös-Rényi, 
dynamic

Improved treatment, NSPs, 
combinations of treatment, and harm 
reduction interventions

Marshall et al. 2012 HIV New York City, USA ABM, Erdös-Rényi, 
dynamic

Build ABM network

McCloskey et al. 2016 HIV 10 locations across 
globe

BA, static Estimate structural parameters of PWID 
network

Metzig et al. 2017 HCV London, UK Exponential clustered 
network, dynamic

Compare exponential clustered, Erdös-
Rényi, and compartmental SIS models; 
improved treatment and behavior 
change

Mills et al. 2012 HCV Bristol, UK Configuration model, 
static

Determine impact of assortivity on 
prevalence and incidence

Mills et al. 2013 HIV St. Petersburg, Russia ABM, dynamic Estimate HIV prevalence

Monteiro et al. 2016 HIV New York City, USA ABM, dynamic Determine impact of incorporating 
greater heterogeneity in model

Nucit & Randon-
Furling

2017 HCV/HIV 3 cities, France Scale-free, dynamic Map hypothetical spread of HCV 
between major cities

Pitcher et al. 2018 HCV (review)

Richardson & Grund 2012 HIV New York City, USA ABM, static Determine how diffusion patterns 
change depending on level of structural 
complexity in the model; explore role of 
shooting galleries

Rolls et al. 2012 HCV Melbourne, Australia ABM, static Build ABM network

Rolls et al. 2013a HCV Melbourne, Australia ERGM, static Random or targeted treatment

Rolls et al. 2013b HCV Melbourne, Australia ERGM, static Build ERGM; estimate PWID 
population size

Rolls et al. 2015 HCV Melbourne, Australia ERGM, static Compare ERGM, Erdös-Rényi, and 
configuration models

Rutherford et al. 2016 HIV Vancouver, Canada BA, static Improved treatment, reductions in 
syringe sharing, time to diagnosis, and 
time to treatment

Scott et al. 2016 HCV (review)

Shahesmaeili et al. 2015 HIV Kerman City, Iran MMMM, static Determine how location of individuals 
in a network relates to HIV transmission 
risk

Young et al. 2013 HIV Appalachia, 
Kentucky, USA

Erdös-Rényi & 
original network (no 
tie simulation), static

Compare features of randomly 
generated networks to observed network 
and discuss implications for HIV risk

Zelanev et al. 2018 HCV/HIV Hartford, 
Connecticut, USA

Stochastic block, 
dynamic

Compare fit of stochastic block, ERGM, 
small world models; random or targeted 
treatment

Zhong et al. 2018 HIV (unspecified) BA & Erdös-Rényi, 
static

Determine role of nodes that bridge a 
sexual and injection network

Abbreviations: ABM (agent-based model), BA (Barabási and Albert), DAA (direct acting antiviral), ERGM (Exponential Random Graph Model), 
HCV (Hepatitis C), HIV (Human Immunodeficiency Virus), MAT (medically assisted treatment), MMMM (Multiple membership multilevel 
model), NSPs (needle and syringe exchange programs), PWID (people who inject drugs), SIS (susceptible-infected-susceptible)
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Table 2.

Approaches to modelling tie formation in network models.

Approach Allowance for 
heterogeneity in tie 
probabilities

Typical target 
statistic(s) for fitting 
networks

Key assumptions Examples

Erdös-Rényi 
Random Graph 
Model

None Mean degree There are a fixed number of nodes 
in a network
Ties are independent
Each tie is equally likely to occur, 
so clustering is rare

(Cousien et al., 2017; 
Cousien et al., 2016; 
Crawford et al., 2018; 
Marshall et al., 2014; 
Marshall et al., 2012; Young 
et al., 2013; Zhong et al., 
2018)

Stochastic 
Block Model

Tie probability is 
dependent on the blocks 
that each node belongs 
to

Mean degree
Average path length
Clustering coefficient

Nodes within a block are connected 
to nodes in other blocks according 
to their block membership alone

(Zelenev et al., 2018)

Watts Strogatz 
Small World 
Model

None Mean degree
Average path length
Clustering coefficient

Each node is connected to every 
other node in the network by a 
small number of ties
Networks are clustered

(Cui et al., 2009)

Barabási-Albert 
Preferential 
Attachment 
Model

Tie probability is 
based on preferential 
attachment

Mean degree New nodes form ties based on 
degree alone
Older nodes have more ties on 
average than newer nodes

(Dombrowski et al., 2013b; 
Rutherford et al., 2016; 
Zhong et al., 2018)

Exponential 
Random Graph 
Model

Tie probability is a 
function of covariates 
selected by investigators 
(e.g. sex, race, and 
degree of index node, 
age difference between 
nodes)

Many targets selected 
by investigators, (e.g. 
homophily in sex and 
race, mean degree, 
average path length, 
clustering coefficient)

The shape of the network (i.e. the 
possible set of configurations of 
the nodes) is constrained by the 
statistics of the observed network 
provided by investigators

(Dombrowski et al., 2013a; 
Dombrowski et al., 2017; 
Fujimoto et al., 2015; Hellard 
et al., 2014; Khan et al., 
2013; Rolls et al., 2013a; 
Rolls et al., 2013b)
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